首页> 外文OA文献 >Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms
【2h】

Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms

机译:网络层面异常的表征与补偿   混合信号神经形态建模平台

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Advancing the size and complexity of neural network models leads to an everincreasing demand for computational resources for their simulation.Neuromorphic devices offer a number of advantages over conventional computingarchitectures, such as high emulation speed or low power consumption, but thisusually comes at the price of reduced configurability and precision. In thisarticle, we investigate the consequences of several such factors that arecommon to neuromorphic devices, more specifically limited hardware resources,limited parameter configurability and parameter variations. Our final aim is toprovide an array of methods for coping with such inevitable distortionmechanisms. As a platform for testing our proposed strategies, we use anexecutable system specification (ESS) of the BrainScaleS neuromorphic system,which has been designed as a universal emulation back-end for neuroscientificmodeling. We address the most essential limitations of this device in detailand study their effects on three prototypical benchmark network models within awell-defined, systematic workflow. For each network model, we start by definingquantifiable functionality measures by which we then assess the effects oftypical hardware-specific distortion mechanisms, both in idealized softwaresimulations and on the ESS. For those effects that cause unacceptabledeviations from the original network dynamics, we suggest generic compensationmechanisms and demonstrate their effectiveness. Both the suggested workflow andthe investigated compensation mechanisms are largely back-end independent anddo not require additional hardware configurability beyond the one required toemulate the benchmark networks in the first place. We hereby provide a genericmethodological environment for configurable neuromorphic devices that aretargeted at emulating large-scale, functional neural networks.
机译:神经网络模型的规模和复杂性的不断提高导致对其仿真计算资源的需求不断增加。神经形态设备与传统的计算体系结构相比具有许多优势,例如高仿真速度或低功耗,但通常以降低成本为代价可配置性和精度。在本文中,我们研究了神经形态设备常见的几种此类因素的后果,尤其是有限的硬件资源,有限的参数可配置性和参数变化。我们的最终目标是提供各种方法来应对这种不可避免的失真机制。作为测试我们提出的策略的平台,我们使用BrainScaleS神经形态系统的可执行系统规范(ESS),该规范已被设计为神经科学建模的通用仿真后端。我们详细解决了该设备的最基本限制,并在定义明确的系统工作流程中研究了它们对三种原型基准网络模型的影响。对于每种网络模型,我们首先定义可量化的功能度量,然后通过它们评估理想的软件仿真和ESS上典型的特定于硬件的失真机制的影响。对于那些导致与原始网络动力学产生不可接受偏差的影响,我们建议采用通用补偿机制并证明其有效性。所建议的工作流程和所研究的补偿机制都在很大程度上是后端独立的,除了首先模拟基准网络所需的硬件配置之外,不需要其他硬件可配置性。我们在此提供针对可配置神经形态设备的通用方法环境,这些设备旨在模拟大型功能神经网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号